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TECHNICAL NOTE 4282

BOUNDARY~-LAYER STABILITY DIAGRAMS FOR ELECTRICALLY
CONDUCTING FLUIDS IN PRESENCE OF A
MAGNETIC FIELD

By Vernon J. Rossow
SUMMARY

The effectiveness of a magnetie fleld in stabllizing the laminar
flow of an incompressible, electrically conducting fluid 1s studled.
The neutral stabllity curves pertaining to a two-dimensional sinusoidal
dlsturbance are presented for flow over a seml-infinite flat plate in
the presence of elther a coplanar or transverse megnetlic fleld and for
channel flow 1n the presence of & coplanar magnetic fleld. As is to be
expected, the magnetic field stabllizes the flow unless the veloclty
profile is distorted by the magnetic fleld to an inherently unstable
shape., This occurs when a transverse magnetic field 1s fixed relative
to a8 seml-infinite £flat plate.

INTRODUCTION

Mere mention of the possibllity of comtrolling the motlion of
electrically conducting flulds with a magnetic fleld stimulates cne!s
Imagination to conceive flow flelds which msy furnish certain idesl char-
acteristics. All too often the conflgurations are too compliceted to be
emenable to analysis end one must be content with a greatly simplified
version of the original ldea. A survey of the literature shows that s
number of baslic solutions are being accumulated. A large portion of the
effort 1s dlrected at the theoreticel evaluatlon of the effectliveness of
a magnetic fleld in stabillizing a given laminar flow so that transition
to turbulent flow 1s Inhibited. Some of the earllest work on problems
of. this type was carried out by S. Chandrasekhar. He found that a mag-
netic fleld would Inhibit the onset of convection in s fluld heated from
below (ref. 1), and would impede the transition to turbulence of fluld
between rotating cylinders of nearly the same dismeter (ref. 2). In a
later paper, reference 3, it is found that a lsyer of fluild heated from
below and subject to rotetlion 1s, under certaln condlitions, destabllized
by application of a small magnetic fleld. The motlon 1s stabllized by
Increasing the magnetic fleld strength beyond a certain amount.

The effect of a magnetic fleld on the stabllity of the flow of en
Incompressible electricelly conducting fiuld in a two-dimensional channel
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hes been studied for a coplaner megnetic field by Stuart (ref. L4) and for
a transverse magnetic field by Lock (ref. 5). The transverse magnetic
field is found to be the more effective in stabllizing the flow fleld.
The high degree of stabilization brought about is attributed (to the
order of accuracy of. the anslysis) entirely to the change in the veloeity
proflle caused by the Interaction of the fluld and magnetic field. When
the magnetic~field lines are parallel to the stream directiom, the favor-
able effect on the stabllity of a dlsturbence is brought about by the
electromotive resistance encountered when a fluld element leaves 1its
normal path of motion in an effort to form s turbulent eddy, thereby
crosging magnetic llnes of force.

The effect of & coplanar magnetic field on the stabllity of a laminar
mixing region was studied by Curle (ref. 6). The Reynolds numbers at
which & small disturbance becomes unstable are generally quite smell for
this type flow field (generally less than 100) but increase raplidly with
increasing megnetic parameter. Complete stabilizatlion 1s predicted for
& magnetic parsmeter over 0.301.

An experimental example of flow instabllity caused by a magnetic
field is given by Lehnert in reference 7. It is found that a shellow
layer of mercury over a copper disk with two concentric copper rings is
destabillized by application of & vertical magnetic field. The rotation
of the inner copper ring produces & shear layer in the mercury which is
intengified by the magnetic field to the extent that an eddy-type flow
results. It is pointed out by Lehnert that-a generallization concerming
the effect of a magnetic field on the flow fleld cennot then be made,
and each situetion must be studied to £ind out 1f the beginning of empli-
flcation of a disturbance 1s actually delayed to a higher Reynolds number
by the magnetlc f£ield.

The flow of an incompressible electrlically conducting fluld over a
semi-infinite flat plate in the presence of a magnetic field perpendicular
t0 the surface of the plate was studled in reference 8. The effect of
the megnetic fleld on the stability of the flow has not as yet been
studied for the céd®e when the magnetic lines of force are perpendicular
to or alined with the stream direction. It is the intent of this paper
flrstly to present an analysis of the stabllizing effect brought about
by a coplanar magnetic fleld acting on an electrically comducting fluid
flowing over a semi-infinite flat plete., The analysis is restricted to
infinitesimal sinusoldsl disturbances of the Tollmien-Schlichting type.
In the course of the investigation it is necessary to evaluate a large
portion of the numerical work for the corresponding two-dlmensional chen-
nel problem, Since the method of analysis is slightly differeant from
that of reference L4, these results are presented. Secondly, the effect
of a transverse msgmetic fleld is considered. As was found for the chan-
nel (Lock, ref. 5), the change in the criticsl Reynolds number,for the
flat plate 1s controlled primerily by the change in the veloclity profile
brought about by the Intereaction of the fluid and magnetic field. The
velocity profile shapes which are consldered are taken from the two
simplest cases analyzed in reference 8. The first case assumes that
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the trensverse magnetic field 1s fixed reletive to the plate and the
second that 1t 1s fixed relative to the fluid far from the plate.

The method of analysis which is used 1s patterned after the procedure
developed and described by C. C. Idin in references 9, 10, and 11. A his-
tory of the development and of the varlous physical problems which have
been studied 1s glven in a monograph by Idn in reference 12. A brief
outline of the method is glven in the introduction to the present analy-
sls. The neubral stabllity curves are presented for several vslues of
the megnetlc parameter.

SYMBOLS
a l-c
B imposed megnetlic Inductlion
c wave speed of disturbance
F(z) Tietjen's function (see eq. (19))
052
m magnetic parameter, ?, per wnlt length
PYe
P pressure
:’91’} inviscid perturbetion amplitude fumctions (see eq. (8))
,l LN J
88U,
R Reynolds number based on boundary-layer thickness, ="
Ryx Reynolds number based on dlstence from leading edge of
flat plete, "t Uee
u x component of veloclity
i}
U —
U
i) velocity in the stream directlon of the flow fleld to be
perturbed
v y component of veloclty

X,y rectangular coordinates
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Vb(Ub'“R)lls

wave number of disturbance

boundary-layer thickness, 6 %;Z
00

1
(G.R)ll 3

perturbetion stream function ..
amplitude function

kinematlic wviscosity
¥=Yo

€
density of fluld

electricel conductivity

viscous perturbation stream functions (see eq. (16))

Subscripts

edge of boundary layer, or free stream
critlicel layer where U=c¢ - B

di.sturbance

Superscripts ..

vector
derivative with respect to ¥y

dimenslonal quantities
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ANALYSIS

The present stabte of stabllity theory regqulires that a number of
slmplifications be made In the analyslis so that the method can be gpplied
to physical situstions without a prohibitive amount of labor. The method
developed by C. C. Lin (refs. 9, 10, and 11) is a compromise between
accuracy and effort requlred to analyze a glven flow field. The present
enalysis 1s therefore pattermed after 1t.

Resume of Steps in Analysis

The deslred result is a stabllity diagram of exclting wave number o
and Reynolds number R. At the beglnning, the undisturbed steady-state
spolution to the magnetohydrodynemic flow problem belng consldered 1s
assumed to be known. This Information together with the equetions of
motion, the continuity equation, Maxwell's equatlions, Ohm'!s law for a
moving fluld, the electromotive force relation, the wave nature of the
disturbance, plus varlous approximations go to meke up a complex fourth-
order ordinary differentiel equation for the amplitude function ¢. The
various steps wlll now be explained. Sketch (a.) was deslgned to orlent
the reader 1n the subsequent analysls vwhich, in view of 1ts well
established nature, is discussed only briefly.

The flow fleld 1s af some time assumed to be a steady two-dimensional
ptream of Incompressible electrically conducting fluid. A two-dimensionsal
Infinitesimal sinusoidal disturbance of a glven wave number o 31s then
Impressed on the fIuld to test for the stability of the stream. A sinus-
oidel disturbance 1s chosen because many disturbances which are likely
to occur in nature cen be Fourier snalyzed and thereby reduced to a sum
of sinusoidal disturbances. The magnitude of the disturbance is assumed
to be vanlshingly small or infinitesimsl so that the analysis may be
simplified by retaining only those terms which are linear in a disturbance
or perturbation quantity. The weve nature of the disturbance is intro-
duced by the dlsturbance stream function

where o%* 1is the wave number, c¥* 1s the veloclty of the wave in the
stream direction, end ec4¥* 1s the rate of growth of the wave amplitude.
The disturbance velocities are then given by u* = dy/dy* and

vE = -(a\y/Bx*). The starred quantltles have physical dimenslons, whereas
the unstarred counterparts have been made dimensionless by dividing by
the free-stream veloclty Uy, or by the boundsry-layer thickness 8 as
the case may be. It 1s assumed that the disturbence veloclity and
magnetic-field components are characterized by this exponential and
depend on 1t to a flrst power. The object of the analysis is to find
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the conditions vhen the wave will just begin to grow* (i.e., will be
nelther damped nor amplified but neutra.l), the factor ci* of the expo-
nential is set equal to zero and the exponentisl reduces to elo*(X¥~c¥*t),
This function describes the propagation of the wave in the stream direc-
tlon for a glven station x* as a function of time. The veloclty of
propagation for a glven dlsturbance is independent of the distance eslong
and perpendicular to the plate, It remains o find the circumstences
under whlch the wave emplitude nelther grows nor diminishes but is neu-
tral. It is found that the neutrel point of wave growth occurs when the
wave speed c¥ 1s equal to the local velocity U of the £fluld., The
region in the fluld where this happens 1s referred to as the "ecritical
layer"™ and the distence from the wall as Yo¥.

In the actuel flow problem one knows that the disturbance may be
of either the two- or three-dimemslional type. It has, however, been
shown by Squire (ref. 14) that if the flow fleld is umsteble to a three-
dimensional disturbance it will be umstable o a two-dimensionel disturb-
ence at & lower Reynolds number. The extension of this proof to the type
of magnetohydrodynamic problems being considered here is made by Michael
in reference 15. Only two-dimensional difsturbances will then be congidered
because they are the most umsteble.

When the information Just described is introduced into the equatioms
relevant to the problem, a complex ordinary fourth-order differential
equatlon is obtained for the eamplitude fumction ¢ (sketch (a)).

It is complex because imaginary quentities are introduced by the expo-
nentlal used to describe the perturbations, The terms which contain
products or squares of the disturbance quantities are discarded. It is
aelso assumed that the station in question 1s far enough downstream so
that the varisbles are not changing in the free~stream dlrection.

Even though & number of simplifying assumptions are maede, the form
of the differentlal equation is such that a simple solution has not yet
been found. It 1s necessary then to £ind four linearly independent solu~
tions by reducing the complete differential eguation to two simpler d4if-
ferential equatlons by a power serles expansion in l/R end € = (l/cx.R)"’ 3
a8 indicated in sketch (a). The zero-order terms in 1/R are the only
ones retained, The resulting differential equation is sometimes referred
to as the Inviscid form of the dlfferentiel equation because all terms
involving viscosity have been dropped. Proceeding down to the next step

LThe stebility curves corresponding to a number of growth rates,
zﬁ > 0, have been computed by S. F. Shen (ref. 13) for flat plate end
ennel flow using ean extension of Lin's method.,
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Camplex fourth-order ordinesry differential eguation
foxr

o(y,2,¢,0,m3,R)

(1/5P (/‘RE/ s
2 em(l/aR
Asil&lf%wlvm viscosity) / l \

Complex second-order Complex fourth-order
differential equation - dlfferential equation -
inviscid functions: viscous functions:

#(y,a,c,U,ms) X[ (7-70) (aR) US; Uo! ]

i i E:lr-;o)@a)"’]""l ke x"‘“"

[ e
—/ (O) r(z) b:)“:e(s)

Yo¥s' (0)
= Tietjen's funct

ayR combinations for neutral
stabllity obtained from constanta
in

P = 2101 + 8202 + 8aQs
with constants chosen so that
®(0) = ¢*(0) = ¢ (1) = O

o ms
Unstahle
Stable
R -

Sketch (a)

in sketch (a), the first two linearly independent solutions @, and ¢o
are found by introducing another series which comsists of positive powers
of the wave number o and vhose coefficients depend on the wave speed c
snd veloelty U in the flow fleld. Once agaln, only the first few terms
iIn a are retalned.
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The boxes on the right of sketch (a) indlcate that the solution to
the first-order term In the set of differentiesl equations which results
from the expansion in € = (L/aR)*2 is the only ome which is found.
As pointed out by Lin, higher order functlons could be found by quadre-
tures but in moet cases sufficlent accuracy ls obtalned by consldering
only the flrst-order term. This dlfferentlal equation has four linearly
Independent solutions whlch cen be used. Two of these solutions, Xi
and Xp, are discarded because they are too simple in form for curved
velocity distributions. An examination of X, or ¢ shows that it
Increases without dmit with y and thereby vlolates the boundary con-
dltion that dlsturbances must die out as ¥y epproaches Infinity. For
this reason it is not used in the problems treated in this paper. The
functlion @5 18 generally used in the form kmown as TMetJen's function
(sketck (a)).

The three remalning linearly independent solutlions are then combined
in such a way that the boundary condltions are satisfied. The disturbance
velocities will venlsh at the wall end edge of the boundary layer when

P = 8191 + 8202 + 8303
with the constants a3, 85, and ag chosen so that

9(0) = 9'(0) = 9'(1) = O

This 1s poesible only for a certain combination of o and R when the
magnetic paremeter m8, veloclty distribution U, and wave speed c¢ have
been specified. The end result from several such computations is a graph
of the wave number o versus the Reynolds number R for various velues
of the magnetic parameter mB, Since these curves denote the values

of o and R for neutral stability of the wave, a combination of o and R,
which lies on the side of the curve demoted as unstable, warns that the
smplitude of the disturbance will grow under those conditions. In the
stable region the wave is damped.,

The number of approximations which are made might cause one to doubt
the accuracy of the end results. Estimates made by Lin in reference 1l
indicate that the stability curves should not be in error by much more
than a few percent and are therefore accurate emough for most engineering

purposes.

The analysis of the problems being considered in this paper is
presented in the following sectlions, Since the method is well defined
in references 9, 10, and 11, only the essential parts of the analysis
are presented.
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Coplansxr Magnetlc Fleld

Differentlal equation,~ The dlfferentlal equation for the function ¢

wlll now be derived for the magnetlc-fleld lines allned with the stream
dlrection. The result 1s general enough that it can be applied to the
flow in channels and over flat plates. Maxwell's equatlons for the
Incompressible-flow problems belng considered are

> (1)

HY O HME o =
[/ '}
o o©
&,

iR R

'}
|84

»

vhere E, _E', -5, and p are the electric fileld Intenslty, magnetic inten-
glty, electrlic current density, end magnetlc permeabllity, respectlively,
Ohm's law for a moving fluld is

J =0 +Tx3B) (2)

vhere -:E = p-.'E’ and -ﬁ is the local veloelty vector. The equation of
continulty is

Div T =0 (3)

The Navlier-Stokes equatlon modified to include the electromotive
force term (so-called Lorentz force) arising from the relstive motion
between the fluld and megnetic fleld 1s

g—g+(»-g-ad)'ﬁ-%(3x3)+%sradp=weﬁ (&)

where the excess charge density and epplled electric field are assumed
to be zero.

The relatlon between the Input wave number, o, of the disturbance
end the Reynolds number, R, of the flow at whlch the amplitude of the
disturbsnce neilther increases nor decreases (meutral) will be fowmd by
introducing the quantities,
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=T+ ud*(y*)eim*(x*-c*b) 1
vE o vd*(y*)eiu.*(x*-c*b)

Bx = B + b(yk)elo¥(x¥-c*t) ) (5)
By = B(y*)elo* (x¥-c*t)

P* = B 4 p¥(yw)eloH(x¥-c¥t)

where c¥ = cpy¥* + lci*. When the disturbsnce is classified as neubtral
(neither emplified nor damped) ci* 1s zero. Since the problem will be
to find only the neutral disturbance curves, the quantity c¥* will here-~
after be used to denote only the real part cp¥*, that is, the wave speed
of the dleturbance. The quantity o* 18 the wave number of the
disturbance.

It will be assumed that:

1. The location of the instability 1s far enough dowmstream of the
entrance to the channel or leading edge of the plate that the veloclity
normal. to the boundary is negligible in comparison wilth the velocity

parallel to the bowmdaxy.

_ 2. The fluld 1s of wnlform denelty and conductivity, and the
applied magretic fleld, B, is umiform throughout the flow field.

3. The bounderles are perfect conductors in order to complete the
clrcult for electric currents in the fluld.

4, Terms which contain products or squares of the disturbance
quentities are negligible.

5. The disturbances are neutrelly steble at values of the Reynolds
number high enough eo that a series in (1/aR)X/® converges rapidly.

Following the method used by Stuart in reference 4, equations (1)
through (5) may be combined and simplified using the foregoing assump-
tlons to yleld a complex ordinary dlfferentiel equation for the dimen-
slonless amplitude fumetion o.

(U-¢) (o"-a9) - QU + imbag = 12 (P -20Pgiuaty)  (6)

vhere m = oB2/pU,, R = BU,/v, and U d&enotes the local velocity divided
by the velocity at the edge of the boundary layer, Uy. The symbols o
and c in equation (6) denote the dimemsionless form of the wave num-
ber ao* and wave speed c¥*, respectively. The amplitude function o
1s a function of y = y*/8., The primes denote differentiation with
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respect to the distence y normel to the nearest bounding surface.
Hereafter, only the dimensionless unsterred quentities wlll be used In
the anelysls unless 1t l1s noted otherwlse.

The boundary conditlons are,
P=0" =0 et y=0

or

at center of channel, y =1
=9 =0 {
at ¥y = « for the flat plate

Four linearly independent solutions to equation (6) will now be
found by the technigue explalned in references 9, 10, and 1ll. The first
two solutlons, ¢ end @o, wlll be derived from a serles expansion in 1/R
end are designeted as the inviscld solutions. The two remalning solutions
¢z and @4 result from a serles expansion In € = (l/d.R)lls and are
called the viliscous solutlons.

Inviscid solutions.~- If the terms involving 1/cR in equation (6)
are assumed small, the remalning terms comstltute the differentlial
equation vhich ¢ and @z must satisfy.

(U-c) (9" <®g) - gU" + imBog = O (7)

A solution to equation (7) is found by the method of Helsenberg
(see, e.g., ref. 12). It is assumed that the solution is of the form

When equation (8) is inserted into equation (7) and the terms containing
the same power of o are equated, the following set of lineer ordinary
dlfferential equations is found.

Q! - E‘j'_; =0 (9a)
w _ Ut _ _imd

% U-c . U-c (9p)
ﬁ'%%’%-a'%%‘l’ ne=2,3, ... (9n)

The two linearly independent solutlions of equation (9a) are
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G, =U~-c¢ (10e)

¥
%, = (U-c)j; -—dL—(U-c)a (10v)

The two inviscld solutions for the fumction ¢ may then be written
es

v Y
ou(y) = (U=e) [1 +o® L T _L‘ * (U-c)ayatys +

f (U-c)® f (U-c)2£ #iys(u'c)zwltﬁyaé}'zdh o ] -
(U=c) {:Lmsa. [f T f (U-c)éye8ys, +
f (U-c) f (U-c )zjo‘ (U}c)aiya(u-c)dhd:rsdvzdh + .. .]+ .. .}+ .

and

y ¥y o1 R4 ¥a
%(Y)-(U-c){‘/;ag_f)—g+0?o(—u_c—)5 (U-c)a‘[ T )Edv'adVadh+----

s [ [y [P [P ] e

vhere only linear terms in mB have been retalned.

The integrals in equations (11) and (12) may be changed to a more
convenient form by the transformation employed by Iin in reference l1ll.
At the wall, y = 0, and at the edge of the bowmdary layer, y = 1, the
inviscid functions and thelr derivatives then become

?(0) = - W

¢! (0) = U*(0)

* ‘ (13)
92(0) =0

90 = -2 J
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l-c

(1) = ToPE - ima(l-e)ps + . . . D
oi(n) = g [T e - L smna(pusatys < - )]

13

p=2(1) = (1-¢) [I—Kl—- - &®Ng + imda(gsKipo~ . . .)] > (1k)

q;é(l) S — e+l -0fHy -, .. -

1 [oPK; (Hi-0®Mat+ . . .)
I-—c{'_l_lT_-aana +1- Pl

imba.[K;_(plma:ps+ « s ¢) =P~ . . ]} )

vhere

P1 =fl(U'°)5¥

o

1 1 N
yo 2 =£ ch: (U~c)dyzdyy

1 ¥ Ja2
Ps = L (U-c)® l 15}55 L' (U-c)dysdyzdyy

1(U ) 1 dysdy-ay:
= ————— -C
4 fo (U-c)a,_/; Y2 (U-c)2 i

H = f * (U-e)2ay
(o]

"1 ﬁ(U )2

1 2 M+ 1 Y2 2
Mo = [(0)? [7 e [ (we)2esavatns
o Y1 -)%Jo

(15a)

(15p)

(15¢)

(154)

(15e)

(15£)

(158)



14 NACA TN L282

1 bES 1
N3 =f X Ef (U'c)af —1-—2' dyady=dys (13h)
o o ya (U-c)

e[ - (251)

The path of Integration, according to
N reference 10, lles along the reel Yy eaxis with
an indentation slong a semlclircular path under
the singular point, ¥y = y, (i.e., where U = c)
as shown in sketch (D).

U=c Viscous solutions.- The two remaining
1) ) 0 Jr independent solutlons, the so-called viscous
solutions ¢y and @4, are found by introducing
Sketch (D) the small paremeter e = (1/aR)1/3 end the

function X as
en =¥ - Yo A

o(y) = X(o)(n) + ex(l)(n) +-eax(2)(n) + o0 > (16)

1
o) 2 .
U-c=Ué(en)+E!—(e'q) + ..

4

The subscript o Indicates that the quantity 1s to be evaluated at the
point where U = c. If the equations (16) are introduced into equation (6)
end the terms containing the same power of. € are equated, the following
set of ordinary differential equations results.

WEKE )+ IXTT = 0 (17e)
W Gy =B - F By Gy Gm
etc.

The solutione to equation (17a) are the only ones in this series
vwhich are found. As pointed out in the Introduction to the analysis
two of these four linearly independent solutions are discarded on the
grounds that they are trivial. It 1s also found that the function X,
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or @4 Increases with y Indefinitely and thereby violates the boundary
condition that the disturbance velocities must dle out at the edg® of the
boundsry layer. The form of the solution required 1s then

s (0)
3 (0)

= -y F(z) (18)

2 = ¥, (UhaR) ®

‘-/;-zd.g LECHZH:L/S [% (1§)3/2:| at

-zb/;-z'ﬁllaﬂus [L;. (1;)3’2] at

F(Z) = (19)

end Hyss( ) is a Hankel function of the first kind and of order 1/3.
The function F(z) is sometimes referred to as the TletJen's function,
The tabulated values of references 9 and 16 are plotted in figure 1.
The viscous solutlon is not modified by the presence of the magnetic
field to the order of accuracy of the analysis.

The inviscid solutions, equations (13) and (1L4), together with
equation (18) make it possible to f£ind the change in the neutral
disturbance curve caused by a coplanar magnetlc fleld.

Chennel flow (parsbolic velocity profile).- The flow of & viscous
fluid between parallel planes (Poiseullle fiow - sketch (c)) glves rise
to a parabolic velocity profile 1f the station in
question 1s not nesr the entrance to the channel. —] —_——
The effect of a coplanar magnetic field on the — "8 —
growth of a two-dimensional disturbence has already —a=V = - —
been studied by Stuart in reference L. The differ- —t——
ence between the anslysls carrlied out here and in
reference 4 lies in the larger number of terms Sketch (e)
retained here for the inviscld solution ¢; and in
the form of equation (22) which is used to find the proper a~R combina-
tion. The end results of the two amalyses should, however, be about the
same. Since the iIntegrals (15) must be evaluated for a parebolic veloc-
ity profile in order to make application to the flat-plate flow fileld,
only & small amount of addltional effort is required to find the neutral

disturbance curves for the channel.
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The velocity distribution 1s written as
U=2y-y® (20)

The integrals (15) can be evaluasted in closed form for arbitrary values
of the weve speed c.

1
Pr=e -3 (21a)

L/ 1 1-a2 -1 0 1+ xd. -
P = g(; + 1m0t % in EE) + Toag (3eP-2e3-1) (21pv)

Pgy = .2T‘;°2. (3a2-2a2-1) + 35'2'?' <8"?2 1n a + 88%

-682+3 2]],2) .
18

ha .. 300

%3:3& (1+8)® [2”"2 + ”l;’“/ 5 <L-3a + §-;f> ﬁm(ha)] +

180
1+2a3-3a% s [211a®  14+17a/k _ 8a2
o (1-8) [ 85 + S (l+3a. + 3 )_}fx(l—a)] - (2lc_)

Q@ = EJ:E 1 @T:) [.3_(1"?:’)_2 (2a-1)1n(1+a) + l(f): (2a+1) m(]_.-a)+3(ag+2)]+

= { 2Io(1)-Lg %}) -~ Lg (%) 1. ("“22‘)2: - ““(;*‘”E + (1a 2¢)[1n(1-8) 1} +

% [%- 1n(1-e2) - B—ga- n 2a + E‘@- +2 (a.a_- %‘-) n G:"—i) +.-j;3’—r (3&2-253-1)]

(214)

where &2 = 1-c, and Lp( ) 1s the dilogarithmic integral. Numerical
values for the relations (21) for several values of the parameter c are
presented in teble I. The functions L, are tabulated in references 17
and 18. The remsining integrals in the group (15) are written and
tabulated in reference 1l. o '

It remeins now to combine the inviscid and viscous solutioms so that
the boundery conditions at the wall and at the edge of the boundary layer
are satisflied. It is found that the wave number of an antisymmetric
disturbance and the Reynolds number of the flow fleld must be chosen so

that
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5 (0) -cipél)

¥, (0) B [

(22)
Yo| U' (0)@L(1) + % cp:'L(l)]

F(Z) = -

With all of the individual functions known, an iteration scheme is
employed to f£ind the correct wave number and Reynolds number combination.
A grephical method was used to find the Intersection of the curves of
the functions on the left and right sides of egquation (22) for several
vaelues of the paremeter c, whereas a numerical iteration scheme was
used In reference 11.

The neutral disturbance curves for several values of the msgnetic
parsmeter m8 are shown in figure 2(a). Since the paremeter mBa was
held constant in the analysis of reference 4, a direct comparison with
the neutrel stablllity curves of that paper cannot be made. The critical
Reynolds numbers found by the two analyses will be compared in the
discussion.

Flat-plate veloclty proflle.- When an incompressible viscous fluid
flows pest & semi-InfInite flat plate of zero thickness, the velocity
profile can be predicted theoretically and
is generally referred to as the Blasius pro- y _ U—
file (sketch (d)). The neutral stability -
curve in the nonmegnetic case has been com- Ue P gl =
puted in references 9, 10, and 11. The — —_—
effect of the magnetic fleld on these
results will now be foumd. Sketch (4)

The integrals (15a) through (15d), evaluated by the approximate
method suggested in reference 11, are tabulated in table IT for specific
values of c¢. The real and imaginary parts of K, are computed by the
relatlions gilven 1in reference 11 as

1
cUt (0)

2.1|-23c5+...+-§-<c2+8§c5+...)<ln$+i‘x> (23)

Kip = - + 0.1465 + 1.246Tc + 1.045c2 4+ 2.039¢® + L.0T8c* +

Ky = -x -(?f’-;'g (24)
(o]

The expression which determines the proper values of wave number o
and the Reynolds number R for the flat-plate problem is



F(Z) =

c[cpé(l) + apa(1)]
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(25)

o {0 OV 19(1) + aae(1)] + £ [05(1) + apy (01}

The neutral stabllity curves for several values of the magnetic
parameter mB are shown in figure 2(b).

Transverse Magnetlc Field

The change In the boundary-layer veloclty profile for flow over a
flat plate In the presence of a transverse magnetic field was found in
reference 8. It was found that the skin friction and heat transfer are
reduced if the magnetic field is fixed relative to the plate (sketch (e))
and increased if it is fixed relative to the
fluld outside of the boundary layer

l
!

i

Hu,l{

N

T

Sketch (f)

assumptions ocutlined in the analysis of the coplanar field.
ential equation for the perturbation stream fumetlon is then

(U-c) (p"-a2g) - Uty =

(sketch (£)).

The possiblility exists, however,

that the magnetically induced velocity profile
may be more or less stable to transitlom to

turbulent flow.

An estimate of the change in

the stabllity of an infinitesimal sinusoidal
disturbance induced by the transverse magnetic

fleld will now be found.

The dlfferential equation for the
disturbance stream function is found by the
technique used by Lock in reference 5 which
is to combine equations (1) through (5) and
then simplify the result by applying the five

imd

= "+ ﬁ (@™ -202g"aty)

The dlffer-

(26)

It is shown by Lock in reference 5 that the forms of the inviscid
end viscous solutlons are not affected to the order of the analysis by

the additional magnetic term in equation (26).

In other words, the

change in the veloclty profile caused by the transverse megnetic field

dominstes the stabllizing action of the magnetiec field.

The neutral

stabillity curves for several velues of the magnetic parameter mx are
found by the method outlined In the appendlx of reference 11. The invis-
cld solutions are found by using the numerical data in tebles I and II
of reference 8§ to determine the velocity profiles at mx = 0.05 and 0.10.
The numerical results for the integrals (15e) through (15h) are tabulated
in tables IIT and IV.
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The resl part of the integral (15i) is evaluated by expanding in a
serles about the critical point ¥y = Yo ¥here U = c. The result which
was used 1n the computations for the transverse megnetic fleld is

1 .ll__ un 2 . 3y 3
Ky = - 0.4 — - :Ios in IO Yo ( ?)4 _ (UE,) (0.01}-0.237'0) .
Yo (0 b=yo) (W)= - (Ug Yo (Ug)*  (Up)®
5 (ug)* (0.064 _
-Z (_UEF (_3_ 0.16y, + 0.ll-y°2> S
1 1.1 o, |2aNie 0.1 (27)

4(l-c) \0.T5-¢  J1-c l1+2~/1-c

(1-c)®

The imaginary part K.; 18 evaluated by use of equation (24). The
velocity U in the integrals (15e) through (15h), (2%), and (27) is
referred to the velocity at the edge of the boundary layer &% the partic-
uwlar station being consldered. When the magnetic fleld is fixed relative
to the plate the umdisturbed stream veloclity and the velocity at the edge
of the boundary layer are not the ssme.

The neutral disturbance curves are shown in figures 3(a) and 3(b).
DISCUSSION

The neutral steblllity curves shown 1n figures 2 and 3 indicate that
the presence of a magnetic fleld may stabillize or destabillize the flow
of an incompressible, electrically conducting fluid. It 1s seen from
these results that the flow over a flat plate 1s stabillized by elther a
coplanar magnetic fileld or by a transverse magnetic fileld fixed relative
to the fluld, but a transverse magnetic field fixed relative to the plate
ls generally destebllizing. The portion near the top of the mx = 0.1
curve in figure 3(a) indicates an opposite trend for a small range in
wave number. As polnted out in the Introduction, snother example of
flow Instabllity caused by a magnetic field is presented by Lehnert in
reference T,

A given flow fleld will probably contaln disturbances covering a
wide range of wave number due to imperfections 1n the walls and entrance
to the flow fleld. A conservatlve value for the critical Reynolds number
1s then the lowest value at which it is flirst possible for any of the
waves to be amplified. The crlitical Reynolds numbers for the flow prob-
lems considered in references I and 5 and for the coplenar magnetic-fleld
cases studied in this paper are shown in figure 4 as a function of the
magnetic parameter mS. The results for the transverse magnetic fileld
a8 & function of mx are also shown in figure 4. It 1s seen that the
results of Stuart in reference 4 are in essential agreement with the
present analysis. The difference between the results 1s attributable
to the smaller number of terms retained in the analysis of reference L
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for the inviscid solution. The results for a laminar mixing region
obtained by Curle in reference 6 are not shown in figure 4 because the
Reynolds numbers are too.small for the scele of the graph.

It 18 quite evident from figure 4 that a magnetic field is more
effective when applled to chemnel flow than to flat-plate flow. In
particular, the transverse magnetic fleld is so effective in stabilizing
the flow in a channel that the curve 1s a vertical line to the scale of
the graph.

When the magnetlc fleld 1s coplanar, the large difference I1n the
shape of the critlical Reynolds number curves for the chsnnel and flat-
plate flow flelds 1s attributeble to the infinite extent of the flow
field above the flat plate. As is shown by Lin in reference 9, the
asymptotic form of the disturbence stream functlion as the distance y*
approaches and exceeds the boundary-lsyer thickness, &, Introduces addi-
tional terms In the equation determining the neutral stabllity curves.’
This is obvious when equations (22) and (25) are compared. These addi-
tional terms de-emphasize the terms involving the megnetic parameter and
result In a much smaller stabllizing effect for the flat plate than for
the channel flow.

The msgnetic parameter and the Reynolds number for the flow over &
flat plate at which an infinitesimal disturbance will grow (figs. 2(b)
end 3) are based on the boundary-layer thickness 8 +taken® as
6/ NUo/vx¥*, where U/U, = 0.999. The distance along the plate from the
leading edge 18 then related to the boundary-layer thickness by the
relatlionship

8 = 6x*
Ryex
where, Ryx = Ugx*/v. Therefore,
8 = Emxc*
N Ryx
and
R=6 .JRx*

2gtandard texts on boundary-layer theory usually define the thickness
a8 8 = 5/ JUg/vx¥, where U/U, = 0.99. As explained in reference 11,
moye accuracy is a.chieved. by defining & thicker boundery layer to a
evaluate the inviscid integrals.
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It was Pound in reference 8 that a magnetic field perpendicular to
a flat plate changes the veloclty profile In the boundery layer. Even
a smgll magnetic fleld fixed relstive to the plate wlll cause an Inflec-
tion point® in the veloclty profile near the surface. As is shown in
figures 3(a) and L4, this causes the flow to be less stable with a mag-
netic fleld than in the nonmagnetic field case. The results in fig-
ures 3(b) and 4 indicate that a magnetic field fixed relative to the
fluld far from the plate changes the veloclty profile to a shepe which
is more stable, The results of reference 8 indicate that the skin fric-
tion and heat transfer are reduced in the former and Increased in the
latter case. Care must then be exercised 1f one sttempts to reduce elther
the skin friction or heat transfer by lmposing a magnetic fleld across
(perpendicular to) the flow field and not in relative motion with the
plate, because the laminar flow i1s destebllized by this technique. Idke-~
wise, the lncrease in the skin friction and heat tramsfer brought about
by a transverse magnetlc field sweeping past the plate at the veloeclty
of the free stream would eventuslly experlience a moderate compensating
effect 1n the form of Increased stability of the laminar strean.

The results of this paper, in conjunction with that of reference 8,
point out the fact that it is not certain whether the sgkin friction and
heat transfer are lowered or raised by using a transverse magnetic field
to alter the flow over & flat plate. The magnetlic fleld alters the
veloclity profile and changes the rate of growth of small disturbances so
that the two effects tend to compensate each other. Individuwel situstions
mist then be considered separately to determine whether an advantage can
be achleved.

CONCLUSIORS

The analysis carried out 1n this report for the flow over a flat
plate indicates the effect of a magnetlic field on the stabllity of a
disturbance of the Tollmlien-Schlichting type. In particular it is foumd
that:

l. The flow 1s stabllized by & coplanar magnetic field. The
inerease in the critical Reynolds number is small compared with the
increase achleved 1n a channel wlth a coplanar or transverse megnetic
fleld. '

2. A transverse magnetic fleld fixed relative to the flat plate
chenges the veloclty profile to an Inherently unstable shape which lowers
the critical Reynolds number,

STt is noted in figure 3(a) that the maximm value of the wave number
Pirst Increases and then decreases with Increasing mx, This is caused
by the rapld change 1n the curvature of the velocity p_rofile with mx.




NACA TN L282

3. A transverse magnetlic field fixed relative to the fluid far from

the plate changes the velocity profile in the boundary layer to a shape
vhich is more stable and thereby raises the critical Reynolds number.

Ameg Aeronsutical Laboratory
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2.

3.

,4'-

National Advisory Committee for Aerona.ubics
Moffett Fleld, Calif., May 1, 1958
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TABIE I.- COEFFICIENTS FOR INVISCID SOLUTIONS; PARABOLIC
VELOCITY PROFILE (COPLANAR MAGNETIC FIELD)

c Pa1 P2 Ps a3
o] 0.666T {0.397T {0.09281 ©
.05} .6167| 4101} .0858 |0.6765
1 | 5667 2ok} 07900 ]| .6529
A51) .5167) .4351) .0T2k7| 6675
2 | Ju66T| .Bu80| .0661T| .TO35
251 .4167| .4615| .06010| .T58T
.3 | .366T] .4756| 0542k} .8355
.35} .3167] .4905] .0h855| .94oL
A | .2667| 5062 .04302{1.0828
451 L2167 5230 03762 |1.2818

TABLE II.- COEFFICIENTS FOR INVISCID SOLUTIONS; BLASIUS

PROFILE (COPLANAR MAGNETIC FIELD)

Pa

P2

Ps

.05
.15
.25
.35
45

7133
.6633

.6133
.5633
.5133
4633
L4133
.3633
.3133
.2633

-3817
.3941
- L06L
g1
4321
- Lh55
4597
4TS5
.hg02
.5070

0.1272
.1202
<1134
.1068
.10053
.09546
.08860
.08261
.0TT39
.07198

.5603
5367
5512
.5872
.62k
- T192
.8238

1. 1656
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TABLE IIT.- COEFFICIENTS FOR INVISCID SOLUTIONS; TRANSVERSE MAGNETIC

FIEID FIXED RELATIVE TO PLATE

mxk | ¢ | Hy | Hs Mg | Fs Kip [ Ky | 0 | v,
0.05|0 0.6022 }0.2337]0.07907 0. 1700 -c0 o} 1.8273 |0
.05] .5372} .2225] .06916]| .1806}-10.87 |[-.0310}1..8284| 0274
1| 4772] 2107 06052 .1929] -5.327 [-.0338{1.8302] .0547
15| .4221| .1983{ .05310| .2044} -3.414 |-.0102}1.8312} .0820
.2 | .3721] .1854) .oh682) .2158f -2.394% | .0397{1.8303] .1093
25| .3271] .1718| .ok162] .2266f -1.721 | .1159(1.8263| .1366
.3 )] .2870| .1576| .03741| .2385} -1.209 | .2199]1.8172} .16kl
.35] .2520| .1428| .03409| .2466f -.TT729] .3553|1.8009} .1917
At .2220] 1274 .03151| .2472f -.2995] .5209|1.784Lk}| .2197
A5) .1969] 1112 02956 .2389 2253} .7250|1.7509] .24TT
.10{0 .5733] .2223| .06975| .1732 -0 0] 1.64T73 (0
.05 .5089] .2111| .05984} .1838}-12.28 |-.0914|1.6498} .0303
L1 | JMi95| .1993] .05120) .1962f -6.156 |-.1394]|1.6556| .0606
51 .3951| .1869| .04378| .20T6| -L4.051 |-.1456|1.6625] .0907
.2 | .3456| 1740 .03750| .2190| -2.939 |-.1132}1.6686| .1207
.25| .3012] .1604}| .03230} .2298| -2.228 {-.O44T|1.6T24| .1507
.3 | .26181 1462} .02809} .2417| -1.7L7 | .0580|1.6719| .1806
.35} .2274] .1314| .o24TT{ .2498| -1.323 | .1950}1.665T7] .2105
A4 ] .1980] .1160| .02219| .2504| -1.0126| .3T726]1.6520| .2408
451 17361 .0998] (02024} .2421| -.783L] .5959|1.6310] .2718
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TABLE, IV.~- COEFFICIENTS FOR INVISCID SOLUTIONS; TRANSVERSE MAGNETIC
FIELD FIXED RELATIVE TO FLUID

m | ¢ Hy Ho Ms Ns K1, K1y Ug Yo

0.05]0 0.6458 ]0.2536 [0.09507 [0. 17Ok - |0.4537[2.32L45 [0
.05] .5753] .2k2k] .08516} .1810|-7.937 | .k621]2.2862| .0218
1} .5099] .2306| .076521 .193k|-3.699 | .4Th8|2.2481] .0438
JA5f .habok| .2182| 06910} .2048 |-2.248 | .4936]2.2101| .0662
.2 1 .3940} .2052| 06282} .2162|-1.4584] .5319|2.1707| .0891
.25 .3435] .1917] 05762} 2270 ~-.9174| .587k|2.1293] .1124
.3 | .2981) .1775| .05341| .2389| -.4697| .6642]2.0856] .1360
.35} .2576| .1627] .05009| .24T0| -.0392] .T7692]|2.0370} .1603

A Jo222) ahTel Lob75L) L2WT6F 4347 .910T7[1.98261 .1852
A5 .1917] .1310| 04556} .2393] 1.0287(1.0983}1.9219| .2108
.10}o 65851 .2604| .10067} .1T25 -0 .6430]2.6073 |0
05| .57681 .2492| .09076| .1831{-6.648 | .6606]2.5390} .0196
1| .5202) .237h| .08212] .1954(-2.966 | .6869|2.4732| .0395
15| .45861 .2250) .OThTO| .2068{-1.6996| .T194|2.4045] .0600
.2 | .hoig} .2121{ .0684k2| .2183}-1.0201| .7611{2.3380| .0812
25| .3503f .1985| .06322} .2291{ -.5522| .8189|2.2712| .1028
.3 | .3036] .1843| .05901} .2k10{ -.1525| .8923{2.2029| .1252
.35 .2620) .1695| .05569 | .2491| .2445| .9911{2.1320| .1483
b | .2253] .1541 05311 .2497| .7030}1.124k|2.058%{ 1721
451 .1937) .1379) 05116 2414} 1.3022]1.3015]1.9803 | .1968
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Flgure l.- Tietjen's function, P(z) = Fp(z) + iFj(z) vhere z = yo(Uo'aR)ﬂs.

cbely ML VOVN




|8 =
al-
Stable Ref, u/
| | | | | | | | 1
0 20 40 1 60 80 100

(a) Chemnel fiow; parabolic velocity profile.

Figure 2.- Reglons wherein an infinitesimal sinusoidal dlsturbance 1z gmplified or Gamped in the
presence of a coplanar magnetic field.
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(a) Magnetic fleld fixed relative to plate.

Flgure 3.~ Regions vherein an Infinitesimsl dlsturbance is amplified or damped for flow over a
seml-infinite flat plate in the presence of a transverse magnetic field.
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(b) Magnetic field fixed relative to fluld far from the plate.
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/Channel (transverse) ref. 5 ' T :
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Figure L4.- Critical Reynolds number &g & function of the magnetic paremeter.
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